PRODUCT SPECIFICATION

3.5"TN TFT LCD MODULE MODEL: YDP LCD TN 6 350 004

<	◇>	Preliminary	Specification
---	--------------	-------------	---------------

< ◆> Finally Specification

CUSTOMER'S APPROVAL						
CUSTOMER:						
SIGNATURE: DATE:						

APPROVED	PM	PD	PREPARED
BY	REVIEWED	REVIEWED	BY

knitter-switch

Revision History

Revision	Date	Originator	Detail	Remarks
1.0	2016.03.22	ZFY	Initial Release	
1.1	2016.04.15	ZFY	Add weight Add Chromaticity Transmissive	P4 P7
1.2	2018.04.20	ZDT	Add LED working life Modify many details	P5 P6/P24/P25
1.3	2019.05.09	WQ	Modify Luminance Modify Outline Drawing	P7 P27

Table of Contents

No. Item	Page
1. General Description	4
2. Module Parameter	4
3. Absolute Maximum Ratings	4
4. DC Characteristics	5
5. Backlight Characteristic	5
5.1. Backlight Characteristics	5
5.2. Backlighting circuit	5
6. Touch Screen Panel Specifications	6
7. Optical Characteristics	7
7.1. Optical Characteristics	7
7.2. Definition of Response Time	7
7.3. Definition of Contrast Ratio	8
7.4. Definition of Viewing Angles	8
7.5. Definition of Color Appearance	9
7.6. Definition of Surface Luminance, Uniformity and Transmittance	9
8. Block Diagram and Power Supply	10
9. Interface Pins Definition	11
10. AC Characteristics	12
11. Quality Assurance	17
11.1 Purpose	17
11.2 Standard for Quality Test	
11.3 Nonconforming Analysis & Disposition	
11.4 Agreement Items	
11.5 Standard of the Product Visual Inspection	
11.6 Inspection Specification	18
11.7 Classification of Defects	
11.8 Identification/marking criteria	
11.9 Packaging	
12. Reliability Specification	
13. Precautions and Warranty	
13.1 Safety	
13.2 Handling	
13.3 Storage	
13.4 Metal Pin (Apply to Products with Metal Pins)	
13.5 Operation	
13.6 Static Electricity	
13.7 Limited Warranty	
14. Packaging	
15. Outline Drawing	27

1. General Description

The specification is a transmissive type color active matrix liquid crystal display (LCD) which uses amorphous thin film transistor (TFT) as switching devices. This product is composed of a TFT-LCD panel, driver lcs, a touch panel and a backlight unit.

2. Module Parameter

Features	Details	Unit
Display Size(Diagonal)	3.5"	
LCD type	TN TFT	
Display Mode	Transmissive /Normally White	
Resolution	320RGB x 480	Pixels
View Direction	6 O'clock	Best Image
Gray Scale Inversion Direction	12 O'clock	
Module Outline	55.7(H) x 84.8(V) x 3.9(T) (Note1)	mm
Active Area	48.96 (H) x73.44V)	mm
Pixel Pitch	153(H) x 153(V)	um
Pixel Arrangement	RGB Vertical Stripe	
Display Colors	262K	
Interface	RGB or 8/9/16/18 Parallel Interface	
Driver IC	ILI9488	-
With or Without Touch Panel	With	
Operating Temperature	-20~70	°C
Storage Temperature	-30~80	°C
Weight	32	g

Note 1: Exclusive hooks, posts, FFC/FPC tail etc.

3. Absolute Maximum Ratings

GND =0V, Ta=25°C

Item	Symbol	Min.	Max.	Unit
Power supply voltage	VDD	-0.3	3.3	V
Storage temperature	T _{STG}	-30	+80	°C
Operating temperature	T _{OP}	-20	+70	°C

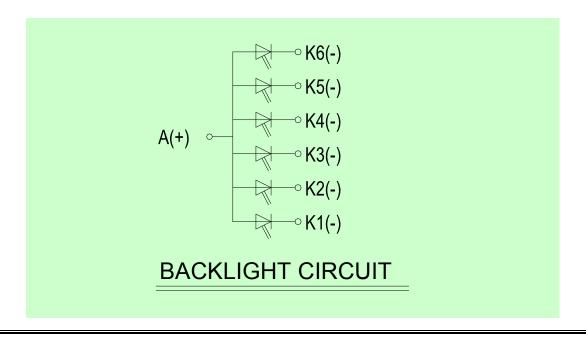
Note 1: If Ta below 50°C, the maximal humidity is 90%RH, if Ta over 50°C, absolute humidity should be less than 60%RH.

Note 2: The response time will be extremely slow when the operating temperature is around -10 $^{\circ}$ C, and the back ground will become darker at high temperature operating.

4. DC Characteristics

Item	Symbol	Min.	Тур.	Max.	Unit	
Supply Voltage		VDD	2.5	2.8	3.3	V
Logic Low input voltage		V _{IL}	-0.3	-	0.3*VDD	V
Logic High input voltage		V _{IH}	0.7*VDD	-	VDD	V
Logic Low output voltage		V _{OL}	0	-	0.2*VDD	V
Logic High output voltage		V _{OH}	0.8*VDD	-	VDD	V
Current Consumption All Black	Logic Analog	I _{CC+} I _{IN}	-	10	20	mA

5. Backlight Characteristic


5.1. Backlight Characteristics

Item	Symbol	Condition	Min.	Тур.	Max.	Unit	
Forward Voltage	VF	Ta=25 °C, I _F =20mA/LED	2.8	3.2	3.4	V	
Forward Current	lF	Ta=25 °C, V _F =3.2V/LED	-	120	-	mA	
Power dissipation	Pb	-	-	384	-	mW	
Uniformity	Avg	-	80	-	-	%	
LED working life(25℃)	-		-	30,000	-	Hrs	
Drive method		Constant current					
LED Configuration		6 White LED	s in para	llel			

Note1: LED life time defined as follows: The final brightness is at 50% of original brightness.

The environmental conducted under ambient air flow, at Ta=25 ±2 °C,60%RH ±5 %, I_F=20mA/LED

5.2. Backlighting circuit

6. Touch Screen Panel Specifications

6.1 Electrical Characteristics

Item	Min.	Тур.	Max.	Unit	Note
Linearity	-1.5	-	1.5	%	Analog X and Y directions
Terminal resistance	100	-	500	Ω	X (Film side)
Terminal resistance	300	-	1000	Ω	Y (Glass side)
Insulation resistance	20	-	-	MΩ	DC ≤10V
Voltage	-	-	10	V	DC
Chattering	-	-	10	ms	

Caution (1): Do not operate it with a thing except a polyacetal pen (tip R0.8mm or less) or a finger nail, especially those with hard or sharp tips such as a ball point pen or a mechanical pencil.

Caution (2): RTP operation must be followed the parameter condition.

Caution (3): If ask for use glare ITO film, it's will has newton issue.

6.2 Mechanical & Reliability Characteristics

Item	Min.	Тур.	Max.	Unit	Note
Activation force	20	-	100	g	(1)
Durability-surface scratching	Write 20,000	-	-	characters	(2)
Durability-surface pitting	1,000,000	-	-	touches	(3)
Surface hardness	3	-	-	Н	

Note (1) Stylus pen Input: R0.8mm polyacetal pen or Finger nail

Note (2) Measurement for Surface area

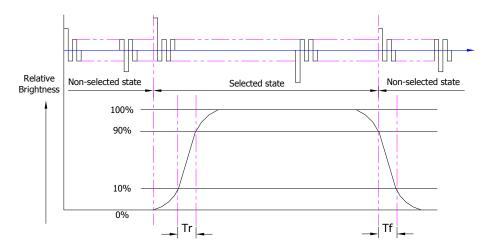
Force: 150-250gfSpeed: 60mm/sec

- Stylus: R0.8 polyacetal pen or Finger nail

Note (3) Pit 1,000,000 times on the Film with a R3.75 silicon rubber.

Force: Force: 2.45NSpeed: 3times/sec

7. Optical Characteristics

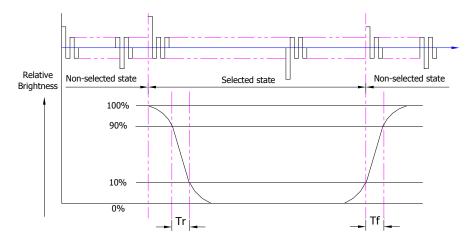

7.1. Optical Characteristics

Ta=25°C, V_{DD} =2.8V

	Item		Cymphal	Condition	S	pecificati	on	Linit
	iteiii		Symbol Condition	Min.	Тур.	Max.	Unit	
	Luminand	ce on						
(6	$TFT(I_f \texttt{=20n}$	nA/LED)	Lv	Normally	250	310	-	cd/m²
ode	Contrast ratio	(See 7.3)	CR	viewing angle $\theta x = \phi y = 0^{\circ}$	400	500	-	
⊠	Response	time	Tr	$\theta x = \psi Y = 0^{-1}$		20	40	mo
Sive	(See 7	.2)	TF		1	20	40	ms
nis		Red	XR		0.541	0.591	0.641	-
Backlight On (Transmissive Mode)	Chromaticity Transmissive		YR		0.295	0.345	0.395	-
Tra		·	XG		0.256	0.306	0.356	-
) u			YG		0.574	0.624	0.674	-
ht C			Хв		0.095	0.145	0.195	-
ligi	(000 7.5)		YΒ		0.022	0.072	0.122	-
ack			Xw		0.213	0.263	0.313	-
B		vviile	Yw		0.250	0.300	0.350	-
	Viouing	Horizont	θx+		55	70	-	
	Viewing Angle	al	θх-	Center CR≥10	55	70	-	Deg.
	(See 7.4)	Vertical	φY+	Center CR210	45	60	-	Deg.
	(See 7.4)	vertical	φY-		45	60	-	
	NTSC Ratio	(Gamut)	-	-	ı	60	-	%

7.2. Definition of Response Time

7.2.1. Normally Black Type (Negative)


Tr is the time it takes to change form non-selected stage with relative luminance 10% to selected state with relative luminance 90%;

Tf is the time it takes to change from selected state with relative luminance 90% to

non-selected state with relative luminance 10%.

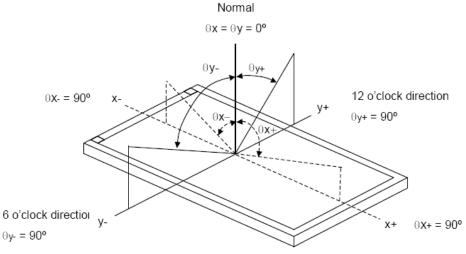
Note: Measuring machine: LCD-5100

7.2.2. Normally White Type (Positive)

Tr is the time it takes to change form non-selected stage with relative luminance 90% to selected state with relative luminance 10%;

Tf is the time it takes to change from selected state with relative luminance 10% to non-selected state with relative luminance 90%;

Note: Measuring machine: LCD-5100 or EQUI

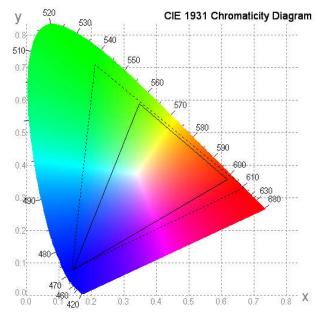

7.3. Definition of Contrast Ratio

Contrast is measured perpendicular to display surface in reflective and transmissive mode. The measurement condition is:

Measuring Equipment	Eldim or Equivalent	
Measuring Point Diameter	3mm//1mm	
Measuring Point Location	Active Area centre point	
Tost nattorn	A: All Pixels white	
Test pattern	B: All Pixel black	
Contrast setting	Maximum	

Definitions: CR (Contrast) = Luminance of White Pixel / Luminance of Black Pixel

7.4. Definition of Viewing Angles

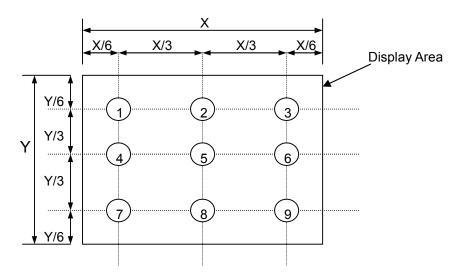


7.5. Definition of Color Appearance

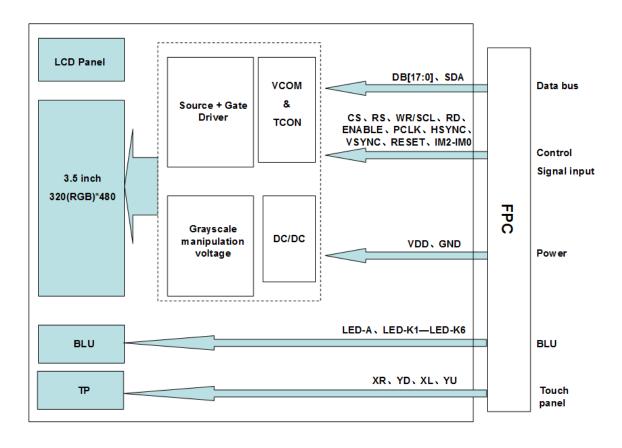
 $R,\!G,\!B$ and W are defined by $(x,\,y)$ on the IE chromaticity diagram

NTSC=area of RGB triangle/area of NTSC triangleX100%

Measuring picture: Red, Green, Blue and White (Measuring machine: BM-7)



7.6. Definition of Surface Luminance, Uniformity and Transmittance

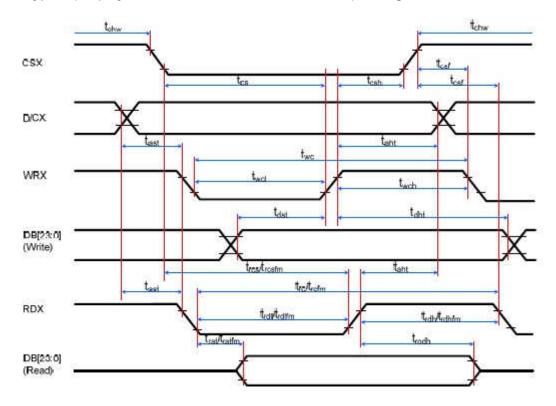

Using the transmissive mode measurement approach, measure the white screen luminance of the display panel and backlight.

- 7.6.1. Surface Luminance: L_V = average (L_{P1} : L_{P9})
- 7.6.2. Uniformity = Minimal $(L_{P1}:L_{P9})$ / Maximal $(L_{P1}:L_{P9})$ * 100%
- 7.6.3. Transmittance = L_V on LCD / L_V on Backlight * 100%

Note: Measuring machine: BM-7

8. Block Diagram and Power Supply

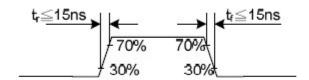
9. Interface Pins Definition

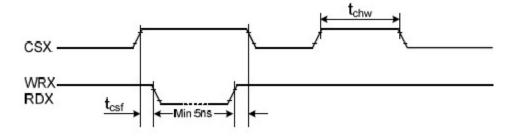

Connector type :FH23-51S-0.3SHW(05) or equivalent

FPC CON

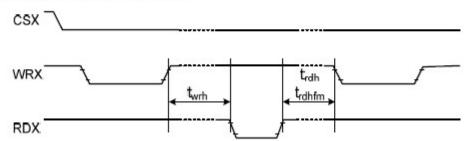
No.	Symbol		Function			
1	TE	Tearir	Tearing effect output pin			
2	GND	Powe	Power Ground			
3-4	VDD	Powe	r supp	ly for L	.CM (2.8V TYPE).	
5	CS	Chip	select	signal		
6	RS	Comr	nand/[Display	data selection signal	
7	WR/SCL		ype C:		oin, serves as a write signal in as Serial Clock when operates in the serial	
8	RD	LCD	driver r	ead er	nable	
9	SDA	Serial	l data i	nput p	in.	
10	RESET	Reset	t input	pin. Si	gnal is active low.	
11-28	DB0-DB17	Data	bus			
29	ENABLE	Data	Enable	signa	I.	
30	PCLK	Pixel	clock s	signal f	or DPI I/F mode.	
31	HSYNC	Horiz	ontal S	Sync Si	gnal	
32	VSYNC	Vertic	al Syn	c Sign	al	
		Select IM2	the M	PU sy IM0	stem interface mode: Interface mode Not use	
33 34 35	IM2 IM1 IM0	0 0 0 1 1	0 0 1 1 0 1	0 1 0 1 1 0	DBI Type B 18-bit bus(DB_EN=0) DBI Type B 9-bit bus DBI Type B 16-bit bus DBI Type B 8-bit bus DBI Type C Option 1(3-line SPI) Not use DBI Type C Option 1(4-line SPI)	
34	IM1	0 0 0 1 1	0 1 1 0 1	1 0 1 1 0	DBI Type B 9-bit bus DBI Type B 16-bit bus DBI Type B 8-bit bus DBI Type C Option 1(3-line SPI) Not use DBI Type C Option 1(4-line SPI)	
34 35	IM1 IMO	0 0 0 1 1 1	0 1 1 0 1	1 0 1 1 0 1 1 termin	DBI Type B 9-bit bus DBI Type B 16-bit bus DBI Type B 8-bit bus DBI Type C Option 1(3-line SPI) Not use DBI Type C Option 1(4-line SPI)	
34 35 36	IM1 IM0	0 0 0 1 1 1 Touch	0 1 1 0 1 1	1 0 1 1 0 1 termin termin	DBI Type B 9-bit bus DBI Type B 16-bit bus DBI Type B 8-bit bus DBI Type C Option 1(3-line SPI) Not use DBI Type C Option 1(4-line SPI)	
34 35 36 37	IM1 IM0 YD XL	0 0 1 1 1 Touch	0 1 1 0 1 1 1 1 n panel	1 0 1 1 0 1 1 termin I termin	DBI Type B 9-bit bus DBI Type B 16-bit bus DBI Type B 8-bit bus DBI Type C Option 1(3-line SPI) Not use DBI Type C Option 1(4-line SPI)	
34 35 36 37 38	IM1 IM0 YD XL YU	0 0 1 1 1 Touch Touch Touch Touch	0 1 1 0 1 1 1 n panel	1 0 1 1 0 1 1 termir termir termir termir	DBI Type B 9-bit bus DBI Type B 16-bit bus DBI Type B 8-bit bus DBI Type C Option 1(3-line SPI) Not use DBI Type C Option 1(4-line SPI)	
34 35 36 37 38 39	YD XL YU XR	0 0 1 1 1 Touch Touch Touch Touch Catho	0 1 1 0 1 1 1 n panel	1 0 1 1 0 1 1 termin 1 termin 1 termin back I	DBI Type B 9-bit bus DBI Type B 16-bit bus DBI Type B 8-bit bus DBI Type C Option 1(3-line SPI) Not use DBI Type C Option 1(4-line SPI) nal hal	
34 35 36 37 38 39 40-45	YD XL YU XR LED-K1-LED-K6	0 0 0 1 1 1 1 Touch Touch Touch Cathol Anode	0 1 1 0 1 1 1 n panel	1 0 1 1 0 1 1 termir I termir I termir back I ack ligi	DBI Type B 9-bit bus DBI Type B 16-bit bus DBI Type B 8-bit bus DBI Type C Option 1(3-line SPI) Not use DBI Type C Option 1(4-line SPI)	

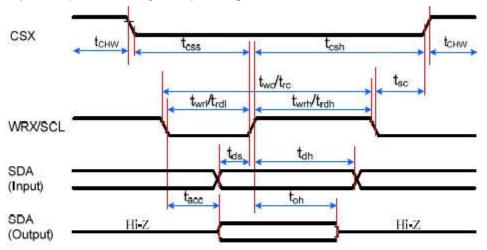
10. AC Characteristics


10.1. DBI Type B (Display Parallel 8-/9-/16-/18-/24-bit interface) Timing Characteristics

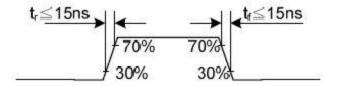

Signal	Symbol	Parameter	min	max	Unit	Description
DCX	tast	Address setup time	0	74	ns	5)
DCX	that	Address hold time (Write/Read)	0	27 8	ns	11 137.0
	tchw	CSX "H" pulse width	0	34	ns	-93
	tos	Chip Select setup time (Write)	15	27 23	ns	H 1550
CSX	trcs	Chip Select setup time (Read ID)	45	30	ns	, al
	trosfm	Chip Select setup time (Read FM)	355	75 °	ns	1 28
	tosf	Chip Select Wait time (Write/Read)	0	3.5	ns	3
	two	Write cycle	30	950	ns	
WRX	twrh	Write Control pulse H duration	15	340	ns	ä
	twrl	Write Control pulse L duration	15	927	ns	2
	trcfm	Read Cycle (FM)	450	3-0	ns	es an estimate a vivil a sa travellar a service security and
RDX (FM)	trdhfm	Read Control H duration (FM)	90	95.7	ns	When read from Frame Memory
	trdfm	Read Control Liduration (FM)	355	3.4	ns	Wellioly
	tro	Read cycle (ID)	160	95.	ns	
RDX (ID)	trdh	Read Control pulse H duration	90	3.4	ns	When read ID data
	trdl	Read Control pulse L duration	45	95.	ns	6
DB [23:0],	tdst	Write data setup time	10	3.5	ns	
DB [17:0],	tdht	Write data hold time	10	95.0	ns	
DB [15:0],	trat	Read access time	18	40	ns	For maximum, CL=30pF For minimum, CL=8pF
DB [8:0],	tratfm	Read access time	1 4	340	ns	Por minimum, OL=8pF
DB [7:0]	trod	Read output disable time	20	80	ns]

Notes:

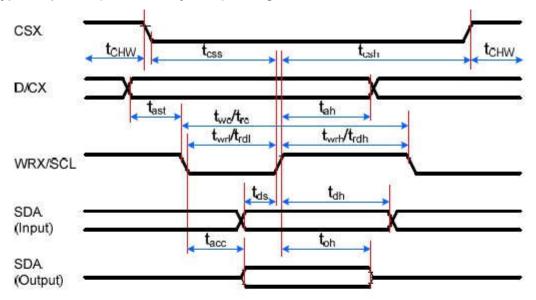

- 1. Ta = -30 to 70 °C, IOVCC = 1.65V to 3.3V, VCI = 2.5V to 3.3V, AGND = DGND = 0V
- 2. Logic high and low levels are specified as 30% and 70% of IOVCC for input signals.
- 3. Input signal rising time and falling time:


4. The CSX timing:

5. The Write to Read or the Read to Write timing:



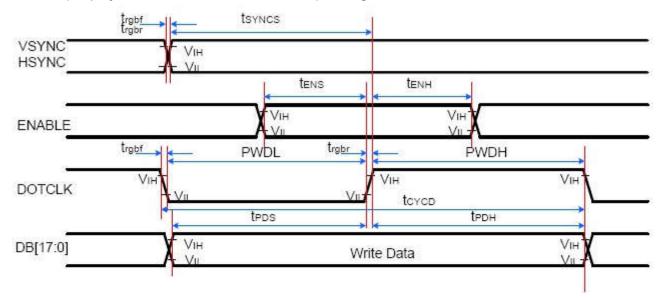
10.2. DBI Type C Option 1 (3-Line SPI System) Timing Characteristics



Signal	Symbol	Parameter	min	max	Unit	Description
	tsc	SCL-CSX	15	02 5	ns	2 82 ES
CSX	tchw	CSX H Pulse Width	40	19	ns	
COV	tcss	Chip select time (Write)	60	05 6	ns	5 (6) 2 (6)
	tcsh	Chip select hold time (Read)	65	19	ns	
	two	Serial Clock Cycle (Write)	66	82	ns	5 65 6 55
	twrh	SCL H Pulse Width (Write)	15	88	ns	
SCL	twrl	SCL L Pulse Width (Write)	15	82	ns	8 86 3 50
SUL	tro	Serial Clock Cycle (Read)	150	38	ns	
	trdh	SCL H Pulse Width (Read)	60	(E)	ns	S (E)
	trdl	SCL L Pulse Width (Read)	60	38	ns	
SDA/SDI	tds	Data setup time (Write)	10	12	ns	e de la companya de l
(Input)	tdh	Data hold time (Write)	10	8	ns	
SDA/SDO	tacc	Access time (Read)	10	50	ns	For maximum CL=30pF
(Output)	toh	Output disable time (Read)	15	50	ns	For minimum CL=8pF

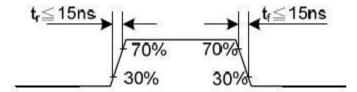
Note: Ta = -30 to 70 °C, IOVCC = 1.65V to 3.6V, VCI = 2.5V to 3.6V, AGND = DGND = 0V, T = 10+/-0.5ns

10.3. DBI Type C Option 3 (4-Line SPI System) Timing Characteristics



Signal	Symbol	Parameter	min	max	Unit	Description
	tcss	Chip select time (Write)	15		ns	
CSX	tcsh	Chip select hold time (Read)	15	n sa Wasa	ns	
	tCHW	CS H pulse width	40	_ ==:	ns	
	two	Serial clock cycle (Write)	50	n sa Was	ns	1 to
	twrh	SCL H pulse width (Write)	10	. :::::::::::::::::::::::::::::::::::::	ns	
SCL	twrl	SCL L pulse width (Write)	10	10 Ka24	ns	1 0 1 0
SCL	tro	Serial clock cycle (Read)	150		ns	
	trdh	SCL H pulse width (Read)	60	724	ns	1 A
	trdl	SCL L pulse width (Read)	60	-	ns	
DIOV	tas	D/CX setup time	10	121	ns	3 2
D/CX	tah	D/CX hold time (Write/Read)	10		ns	
SDA/SDI	tds	Data setup time (Write)	10	124	ns	
(Input)	tdh	Data hold time (Write)	10	-	ns	
SDA/SDO	tacc	Access time (Read)	10	50	ns	For maximum CL=30pl
(Output)	tod	Output disable time (Read)	15	50	ns	For minimum CL=8pF

Notes:


- 1. Ta = -30 to 70 °C, IOVCC = 1.65V to 3.3V, VCI = 2.5V to 3.3V, AGND = DGND = 0V, T = 10 + /-0.5ns.
- 2. Does not include signal rising and falling times.

10.4. DPI (Display Parallel 16-/18-/24-bit interface) Timing Characteristics

Signal	Symbol	Parameter	min	max	Unit	Description	
VSYNC/	t _{syncs}	VSYNC/HSYNC setup time	15		ns		
HSYNC	tsynch	VSYNC/HSYNC hold time	15	8	ns		
ENABLE	tens	ENABLE setup time	15		ns		
ENABLE	tenh	ENABLE hold time	15		ns		
DB (00:01	t _{POS}	Data setup time	15		ns	16-/18-/24-bit bus	
DB [23:0]	t _{PDH}	Data hold time	15		ns	RGB interface mode	
	PWDH	DOTCLK high-level period	20	- 1	ns		
DOTCLK	PWDL	DOTCLK low-level period	20	2 2	ns	1	
	toyon	DOTCLK cycle time	50		ns		
	t _{rgbr} , t _{rgbt}	DOTCLK,HSYNC,VSYNC rise/fall time	8 12	15	ns		

Note: Ta = -30 to 70 °C, IOVCC = 1.65V to 3.3V, VCI = 2.5V to 3.3V, AGND = DGND = 0V

11. Quality Assurance

11.1 Purpose

This standard for Quality Assurance assures the quality of LCD module products supplied to customer.

11.2 Standard for Quality Test

11.2.1 Sampling Plan:

GB2828.1-2012

Single sampling, normal inspection

11.2.2 Sampling Criteria:

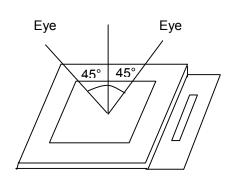
Visual inspection: AQL 1.5% Electrical functional: AQL 0.65%.

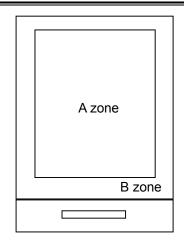
11.2.3 Reliability Test:

Detailed requirement refer to Reliability Test Specification.

11.3 Nonconforming Analysis & Disposition

- 11.3.1 Nonconforming analysis:
 - 11.3.1.1 Customer should provide overall information of non-conforming sample for their complaints.
 - 11.3.1.2 After receipt of detailed information from customer, the analysis of nonconforming parts usually should be finished in one week.
 - 11.3.1.3 If can not finish the analysis on time, customer will be notified with the progress status.
- 11.3.2 Disposition of nonconforming:
 - 11.3.2.1 Non-conforming product over PPM level will be replaced.
 - 11.3.2.2 The cause of non-conformance will be analyzed. Corrective action will be discussed and implemented.

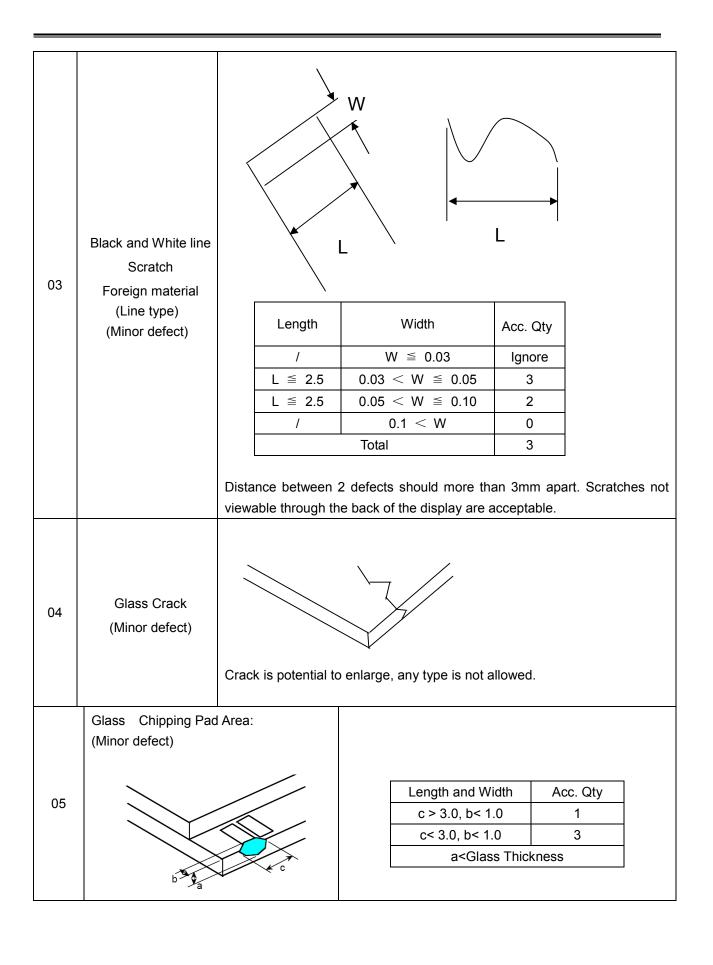

11.4 Agreement Items


Shall negotiate with customer if the following situation occurs:

- 11.4.1 There is any discrepancy in standard of quality assurance.
- 11.4.2 Additional requirement to be added in product specification.
- 11.4.3 Any other special problem.

11.5 Standard of the Product Visual Inspection

- 11.5.1 Appearance inspection:
 - 11.5.1.1 The inspection must be under illumination about 1000 1500 lx, and the distance of view must be at 30cm ± 2cm.
 - 11.5.1.2 The viewing angle should be 45° from the vertical line without reflection light or follows customer's viewing angle specifications.
 - 11.5.1.3 Definition of area: A Zone: Active Area, B Zone: Viewing Area,



11.5.2 Basic principle:

- 11.5.2.1 A set of sample to indicate the limit of acceptable quality level must be discussed by both us and customer when there is any dispute happened.
- 11.5.2.2 New item must be added on time when it is necessary.

11.6 Inspection Specification

No.	Item	Criteria (Unit: mm)					
01	Black / White spot Foreign material (Round type) Pinholes Stain Particles inside cell. (Minor defect)	φ= (a + b) /2	a Size φ≤0 0.10<φ: 0.15<φ: 0.25	≤0.15 ≤0.25 <φ	lg	c. Qty nore 2 1 0 lude φ≤ 0.10	
		Distance between 2 of	defects should more	than 3mm	apart.		
02	Electrical Defect (Minor defect)	Bright dot Dark dot Total dot Mura Remark: 1. Bright dot caus	Display Area 0 N≤2 N≤2 Not visible througed by scratch and form		2 2 filters.	Note1 Note 2 Is to item 1.	

			-	-	
	Glass Chipping Rear of Pad Area:				
	(Minor defect)				_
			Length and Width	Acc. Qty	
			c > 3.0, b< 1.0	1	
06			c< 3.0, b< 1.0	2	1
			c< 3.0, b< 0.5	4	
			a <glass td="" th<=""><td>nickness</td><td></td></glass>	nickness	
	C				_
	b Va				
	Glass Chipping Except Pad Area:				
	(Minor defect)				
			Length and Width	Acc. Qty]
			c > 3.0, b< 1.0	1	
07			c< 3.0, b< 1.0	2	1
			c< 3.0, b< 0.5	4	1
	b		a <glass td="" th<=""><td></td><td>1</td></glass>		1
	The state of the s				_
	a 🏲 "				
	Glass Corner Chipping:				
	(Minor defect)				
			Length and Width	Acc. Qty]
			c < 3.0, b< 3.0	Ignore	1
08			a <glass td="" th<=""><td></td><td>1</td></glass>		1
			u (Olass 11	HORTICOO	J
	b				
	u -				
	Glass Burr:				
	(Minor defect)				
	(Willion derect)				
			Length	Acc. Qty]
09			F < 1.0	Ignore	
				-	_
	,F.	Glass bu	rr don't affect	assemble and	module
	→	dimension.			

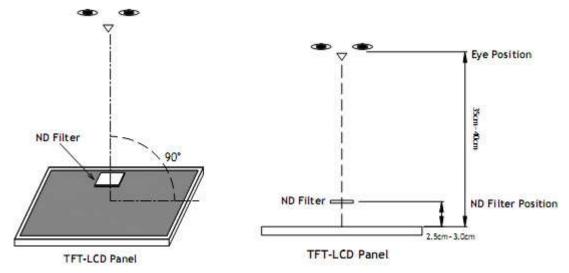
	FPC Defect:(Minor d	efect)					
10	$a \rightarrow \emptyset$ $w \rightarrow \emptyset$		10.1 Dent, pinhole width a<w 3.<="" li="">(w: circuitry width.)10.2 Open circuit is unacceptable.10.3 No oxidation, contamination and distortion.</w>				
11	Bubble on Polarizer (Minor defect)		Diameter $\phi \leqslant 0.20$ $0.20 < \phi \leqslant 0.30$ $0.30 < \phi \leqslant 0.50$ $0.50 < \phi$	Acc. Qty Ignore 4 1 None			
12	Dent on Polarizer (Minor defect)		Diameter $\phi \leqslant 0.20$ $0.20 < \phi \leqslant 0.30$ $0.30 < \phi \leqslant 0.50$ $0.50 < \phi$	Acc. Qty Ignore 4 1 None			
13	Bezel		13.1 No rust, distortion on the Bezel.13.2 No visible fingerprints, stains or other contamination.				
14	Touch Panel	D: Diameter W: width L: length 14.1 Spot: D<0.25 is acceptable 0.25 ≪ D ≪ 0.4 2dots are acceptable and the distance between defects should more than 10 mm. D>0.4 is unacceptable 14.2 Dent: D>0.40 is unacceptable 14.3 Scratch: W ≪ 0.03, L ≪ 10 is acceptable, 0.03 < W ≪ 0.10, L ≪ 10 is acceptable Distance between 2 defects should more than 10 mm. W>0.10 is unacceptable.					
15	LCD Ripple	Touch the touch panel, cannot see the LCD ripple. Pen: R 0.8mm silicon rubber. Operation Force:100g					
16	РСВ	16.1 No distortion or contamination on PCB terminals. 16.2 All components on PCB must same as documented on the BOM/component layout. 16.3 Follow IPC-A-600F.					

17	Soldering	Follow IPC-A-610C standard
18	Electrical Defect (Major defect)	The below defects must be rejected. 18.1 Missing vertical / horizontal segment, 18.2 Abnormal Display. 18.3 No function or no display. 18.4 Current exceeds product specifications. 18.5 LCD viewing angle defect. 18.6 No Backlight. 18.7 Dark Backlight. 18.8 Touch Panel no function.

Remark: LCD Panel Broken shall be rejected. Defect out of LCD viewing area is acceptable.

11.7 Classification of Defects

- 11.7.1 Visual defects (Except no / wrong label) are treated as minor defect and electrical defect is major.
- 11.7.2 Two minor defects are equal to one major in lot sampling inspection.


11.8 Identification/marking criteria

Any unit with illegible / wrong /double or no marking/ label shall be rejected.

11.9 Packaging

- 11.9.1 There should be no damage of the outside carton box, each packaging box should have one identical label.
- 11.9.2 Modules inside package box should have compliant mark.
- 11.9.3 All direct package materials shall offer ESD protection

Note1: Bright dot is defined as the defective area of the dot is larger than 50% of one sub-pixel area.

Bright dot: The bright dot size defect at black display pattern. It can be recognized by 2% transparency of filter when the distance between eyes and panel is $350 \text{mm} \pm 50 \text{mm}$.

Dark dot: Cyan, Magenta or Yellow dot size defect at white display pattern. It can be recognized by 5% transparency of filter when the distance between eyes and panel is $350 \text{mm} \pm 50 \text{mm}$.

Note2: Mura on display which appears darker / brighter against background brightness on parts of display area.

12. Reliability Specification

No	Item	Condition	Quantity	Criteria
1	High Temperature Operating	70℃ , 96Hrs	2	GB/T2423.2 -2008
2	Low Temperature Operating	-20℃, 96Hrs	2	GB/T2423.1 -2008
3	High Humidity	50℃, 90%RH, 96Hrs	2	GB/T2423.3 -2006
4	High Temperature Storage	80℃, 96Hrs	2	GB/T2423.2 -2008
5	Low Temperature Storage	-30℃, 96Hrs	2	GB/T2423.1 -2008
6	Thermal Cycling Test	-20℃, 60min~70℃, 60min, 20 cycles.	2	GB/T2423.22 -2012
7	Packing vibration	Frequency range:10Hz~50Hz Acceleration of gravity:5G X, Y, Z 30 min for each direction.	2	GB/T5170.14 -2009
8	Electrical Static Discharge	Air: \pm 8KV 150pF/330 Ω 5 times	2	GB/T17626.2
	Licetifical Static Discharge	Contact: ±4KV 150pF/330 Ω 5 times		-2006
9	Drop Test (Packaged)	Height:80 cm,1 corner, 3 edges, 6 surfaces.	2	GB/T2423.8 -1995

Note1. No defection cosmetic and operational function allowable.

Note2. Total current Consumption should be below double of initial value

13. Precautions and Warranty

13.1 Safety

13.1.1 The liquid crystal in the LCD is poisonous. Do not put it in your mouth. If the liquid crystal touches your skin or clothes, wash it off immediately using soap and water.

13.1.2 Since the liquid crystal cells are made of glass, do not apply strong impact on them. Handle with care.

13.2 Handling

13.2.1 Reverse and use within ratings in order to keep performance and prevent damage.

13.2.2 Do not wipe the polarizer with dry cloth, as it might cause scratch. If the surface of the LCD needs to be cleaned, wipe it swiftly with cotton or other soft cloth soaked with petroleum IPA, do not use other chemicals.

13.3 Storage

13.3.1 Do not store the LCD module beyond the specified temperature ranges.

13.3.2 Strong light exposure causes degradation of polarizer and color filter.

13.4 Metal Pin (Apply to Products with Metal Pins)

13.4.1 Pins of LCD and Backlight

13.4.1.1 Solder tip can touch and press on the tip of Pin LEAD during the soldering

13.4.1.2 Recommended Soldering Conditions

Solder Type: Sn96.3~94-Ag3.3~4.3-Cu0.4~1.1

Maximum Solder Temperature: 370 °C

Maximum Solder Time: 3s at the maximum temperature

Recommended Soldering Temp: 350±20°C

Typical Soldering Time: ≤3s

13.4.1.3 Solder Wetting

Pin Lead Solder

Recommended

Solder Pin Lead

Not Recommended

13.4.2 Pins of EL

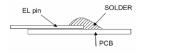
13.4.2.1 Solder tip can touch and press on the tip of EL leads during soldering.

13.4.2.2 No Solder Paste on the soldering pad on the motherboard is recommended.

13.4.2.3 Recommended Soldering Conditions

Solder type: Nippon Alimit Leadfree SR-34, size 0.5mm

Recommended Solder Temperature: 270~290 ℃


Typical Soldering Time: ≤2s

Minimum solder distance from EL lamp (body):2.0mm

13.4.2.4 No horizontal press on the EL leads during soldering.

13.4.2.5 180° bend EL leads three times is not allowed.

13.4.2.6 Solder Wetting

EL pin SOLDER PCB

Recommended

Not Recommended

13.4.2.7 The type of the solder iron:

Recommended

Not Recommended

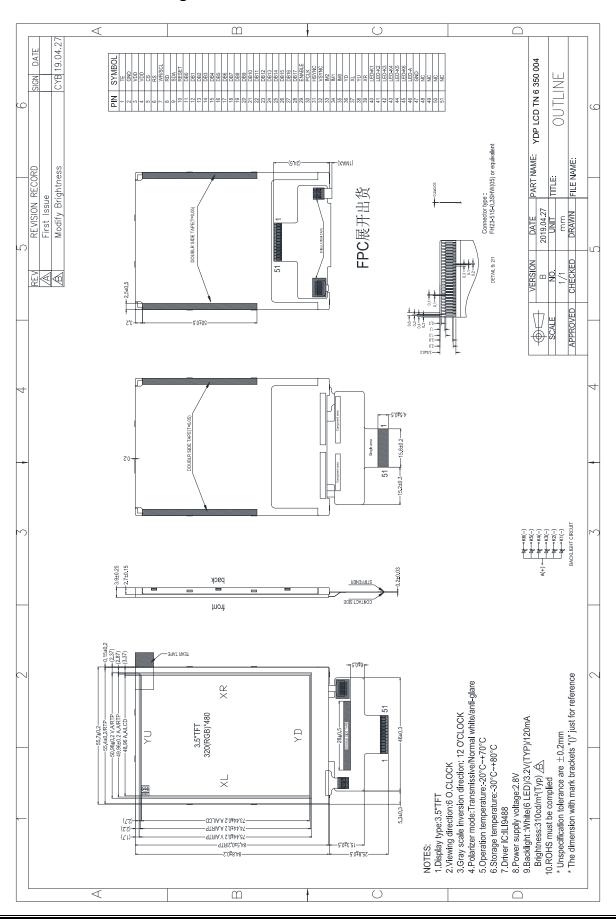
13.4.2.8 Solder Pad

13.5 Operation

- 13.5.1 Do not drive LCD with DC voltage
- 13.5.2 Response time will increase below lower temperature
- 13.5.3 Display may change color with different temperature
- 13.5.4 Mechanical disturbance during operation, such as pressing on the display area, may cause the segments to appear "fractured".
- 13.5.5 Do not connect or disconnect the LCM to or from the system when power is on.
- 13.5.6 Never use the LCM under abnormal condition of high temperature and high humidity.
- 13.5.7 Module has high frequency circuits. Sufficient suppression to the electromagnetic interface shall be done by system manufacturers. Grounding and shielding methods may be important to minimize the interference.
- 13.5.8 Do not display the fixed pattern for long time (we suggest the time not longer than one hour) because it may develop image sticking due to the TFT structure.

13.6 Static Electricity

- 13.6.1 CMOS LSIs are equipped in this unit, so care must be taken to avoid the electro-static charge, by ground human body, etc.
- 13.6.2 The normal static prevention measures should be observed for work clothes and benches.
- 13.6.3 The module should be kept into anti-static bags or other containers resistant to static for storage.


13.7 Limited Warranty

- 13.7.1 Our warranty liability is limited to repair and/or replacement. We will not be responsible for any consequential loss.
- 13.7.2 If possible, we suggest customer to use up all modules in six months. If the module storage time over twelve months, we suggest that recheck it before the module be used
- 13.7.3 After the product shipped, any product quality issues must be feedback within three months, otherwise, we will not be responsible for the subsequent or consequential events.

1	4.	D۵	ام	(2	ai	na
•	4.	гα	u	۱a	uı	пu

TBD

15. Outline Drawing

