PRODUCT SPECIFICATION

2.23" OLED Display Module MODEL: YDP OLED W 223

- $< \diamond >$ Preliminary Specification
- < <> Finally Specification

CUSTOMER'S APPROVAL					
CUSTOMER :					
SIGNATURE:		DATE:			

APPROVED	РМ	PD	PREPARED
BY	REVIEWED	REVIEWED	BY

knitter-switch

Revision History

Revision	Date	Originator	Detail	Remarks
1.0	2022.07.29	ZFY	Initial Release	

Table of Contents

No.	lte	em	Page
1.	Modu	ıle Parameter	4
2.	Abso	lute Maximum Ratings	4
3.	Interf	ace Pins Definition	5
4.	Optic	s & Electrical Characteristics	6
	4.1.	Optics Characteristics	6
	4.2.	DC Characteristics	6
	4.3.	INTERFACE TIMING CHART	7
5.	Outgo	ping Quality Control Specifications	11
	5.1.	Environment Required	11
	5.2.	Sampling Plan	11
	5.3.	Criteria & Acceptable Quality Level	11
6.	Relia	bility Specification	15
	6.1.	Contents of Reliability Tests	15
	6.2.	Failure Check Standard	15
7.	Preca	autions When Using These OLED Display Modules	16
	7.1.	Handling Precautions	16
	7.2.	Storage Precautions	17
	7.3.	Designing Precautions	17
	7.4.	Precautions when disposing of the OLED display modules	17
	7.5.	Other Precautions	18
	7.6.	Warranty	18
8.	Outlir	ne Drawing	19

1. Module Parameter

Features	Details	Unit
Display Size(Diagonal)	2.23"	
Resolution	128 x 32	Pixels
Module Outline	62 (H) x 24 (V) x 2.0(T) (Note1)	mm
Active Area	55.02(H) x 13.1(V)	mm
Pixel Size	430 (H) x 410 (V)	um
Interface	8-bit 6800-series Parallel Interface 8-bit 8080-series Parallel Interface 4-SPI Interface IIC Interface	
With or without touch panel	Without	
Driver IC	SSD1305	-
Display color	white	
Weight	TBD	g

Note 1: Exclusive hooks, posts, FFC/FPC tail etc.

2. Absolute Maximum Ratings

Parameter	Symbol	Min	Max	Unit	Notes
Supply Voltage for Display	VCC	0	15	V	1,2
Supply Voltage	VDD	-0.3	4	V	1,2
Operating Temperature	Т _{ОР}	-40	85	°C	
Storage Temperature	T _{STG}	-40	85	°C	3
Life Time (120 cd/m²)		10000	-	hour	4
Life Time (80 cd/m²)		30000	-	hour	4
Life Time (60 cd/m²)		50000	-	hour	4

Note 1: All the above voltages are on the basis of "VSS = 0V".

Note 2: When this module is used beyond the above absolute maximum ratings, permanent breakage of the module may occur. Also, for normal operations, it is desirable to use this module under the conditions according to Section 3. "Optics & Electrical Characteristics". If this module is used beyond these conditions, malfunctioning of the module can occur and the reliability of the module may deteriorate. Note 3: The defined temperature ranges do not include the polarizer. The maximum withstood temperature of the polarizer should be 80 °C.

Note 4: VCC = 12.0V, Ta = $25^{\circ}C$, 50% Checkerboard.

Software configuration follows Section 4.4 Initialization.

End of lifetime is specified as 50% of initial brightness reached. The average operating lifetime at room temperature is estimated by the accelerated operation at high temperature conditions.

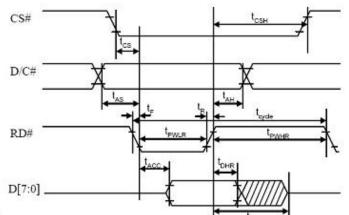
3. Interface Pins Definition

No.	Symbol		Function				
		Reserved Pin (Supporti	• /				
1	NC(GND)	The supporting pins car					
		function pins. These pir	is must be conne	cted to external g	ground as the		
		ESD protection circuit.					
2	VLSS		Ground of Analog Circuit				
3	VSS	Ground of Logic Circuit					
		Reserved Pin (Supporti	- /				
4	NC	The supporting pins car					
		function pins. These pin	is must be conne	cted to external (ground as the		
		ESD protection circuit.					
5	VDD	Power Supply for Logic					
		Communicating Protocol Select					
			BS1	BS2	_		
6	BS1	I2C	1	0	_		
7	BS2	4-SPI	0	0	_		
		8-bit 80XX parallel	1	1	-		
		8-bit 68XX parallel	0	1			
8	CS#	This pin is the chip sele			ICU		
		communication only wh	· · ·		ation of the		
9	RES#	This pin is reset signal i					
10	D/C#	chip is executed. Keep Data/Command Control		duning normal op			
10	R/W#	Read/Write Select or W					
12	E/RD#	Read/Write Enable or R					
12							
13	D0	Host Data Input/Output					
14	D1	These pins are 8-bit bi-					
15	D2	microprocessor's data to					
	D3 D4	the serial data input SD When I2C mode is sele					
17	D4	serve as SDAout & SDA		-			
18 19	D5	input SCL.					
	D7	Unused pins must be co	onnected to VSS	except for D2 in	serial mode		
20 21	IREF	Current Reference for E		•			
21	VCOMH	Voltage Output High Le					
22	VCOMIN			a			
23		Power Supply for OEL I Reserved Pin (Supporti					
		The supporting pins car	- /	ences from stres	ses on the		
24	NC(GND)	function pins. These pin					
		ESD protection circuit.		olog to oxternal (

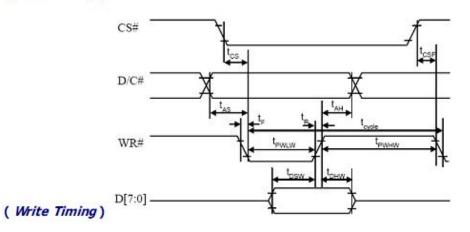
4. Optics & Electrical Characteristics

4.1. Optics Characteristics

Characteristics	Symbol	Conditions	Min	Тур	Мах	Unit
Luminance	Lbr		120	140	-	cd/m2
C.I.E. (White)	(x)	C.I.E. 1931	0.28	0.32	0.36	
	(y)		0.31	0.35	0.39	
Dark Room Contrast	CR		-	2000:1	-	
Viewing Angle			-	free	-	degree

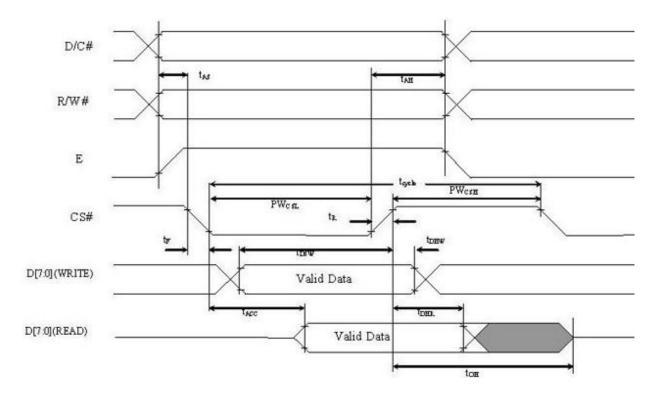

4.2. DC Characteristics

Characteristics	Symbol	Min	Тур	Мах	Unit
Analog power supply	VCC	-	12	-	V
Digital power supply	VDD	1.65	2.8	3.3	V
Operating Current for VDD	IDD	-	180	300	μA
Operating Current for VCC	ICC	-	18	25	mA
High Level Input	VIH	0.8×VDD	-	VDD	V
Low Level Input	VIL	0	-	0.2×VDD	V
High Level Output	VOH	0.9×VDD	-	VDD	V
Low Level Output	VOL	0	-	0.1×VDD	V

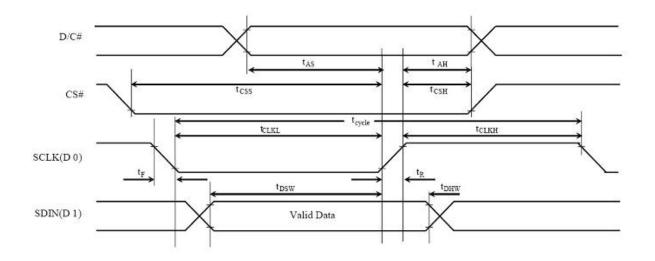

4.3. INTERFACE TIMING CHART

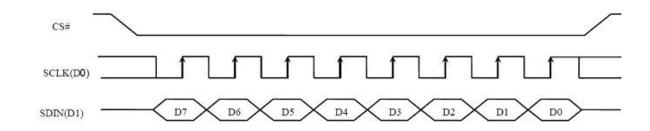
Symbol	Description	Min	Max	Unit	
tcycle	Clock Cycle Time	300	-	ns	
tas	Address Setup Time	10	-	ns	
tан	Address Hold Time	0	-	ns	
t _{DSW}	Write Data Setup Time	40	-	ns	
t _{DHW}	Write Data Hold Time	7	-	ns	
toн	Output Disable Time		70	ns	
t _{ACC}	Access Time	(1)	140	ns	
t PWLR	Read Low Time	120		ns	
t PWLW	Write Low Time	60		ns	
t _{pwhr}	Read High Time	60	-	ns	
t _{PWHW}	Write High Time	60		ns	
t _R	Rise Time		40	ns	
t⊧	Fall Time	9.29	40	ns	

4.3.1. 8080-Series MCU Parallel Interface Timing Characteristics



(Read Timing)


Symbol	Description	Min	Max	Unit
t _{cycle}	Clock Cycle Time	300	-	ns
tas	Address Setup Time	10	3 - 6	ns
t _{AH}	Address Hold Time	0	-	ns
tosw	Write Data Setup Time	40	-	ns
tohw	Write Data Hold Time	7	-	ns
toн	Output Disable Time	327.3	70	ns
tacc	Access Time	-	140	ns
DIAL	Chip Select Low Pulse Width (Read)			
PWCSL	Chip Select Low Pulse width (Write)	60	-	ns
DIM	Chip Select High Pulse Width (Read)	60		
PWcsh	Chip Select High Pulse Width (Write)	60	1 -	ns
t _R	Rise Time		40	ns
t⊧	Fall Time	-	40	ns


4.3.2.	6800-Series MCU Parallel Interface Timing Characteristics	
--------	---	--

Symbol	Description	Min	Max	Unit
tcycle	Clock Cycle Time	250	-	ns
tas	Address Setup Time	150	-	ns
t _{AH}	Address Hold Time	150	-	ns
tcss	Chip Select Setup Time	120	-	ns
t _{CSH}	Chip Select Hold Time	60	-	ns
tosw	Write Data Setup Time	50	-	ns
t _{DHW}	Write Data Hold Time	15	-	ns
t clkl	Clock Low Time	100	-	ns
t _{CLKH}	Clock High Time	100	(.)	ns
t _R	Rise Time	-	40	ns
t⊧	Fall Time		40	ns

4.3.3. Se	rial Interface Timing	Characteristics:	(4-wire SPI)
-----------	-----------------------	------------------	--------------

Symbol	Description	Min	Max	Unit
tcycle	Clock Cycle Time	2.5	-	μs
thstart	Start Condition Hold Time	0.6		μs
L	Data Hold Time (for "SDAout" Pin)	0	-	ns
thd	Data Hold Time (for "SDAIN" Pin)	300		ns
tsD	Data Setup Time	100	-	ns
t sstart	RT Start Condition Setup Time (Only relevant for a repeated Start condition)			μs
t SSTOP	Stop Condition Setup Time	0.6	-	μs
t _R	Rise Time for Data and Clock Pin		300	ns
t⊧	Fall Time for Data and Clock Pin		300	ns
t IDLE	Idle Time before a New Transmission can Start	1.3	-	μs

4.3.4.	I2C Interface Timing Characteristics
--------	--------------------------------------

5. Outgoing Quality Control Specifications

5.1. Environment Required

Customer's test & measurement are required to be conducted under the following conditions:

Temperature:	$23\pm5^{\circ}C$			
Humidity:	$55\pm15\%$ RH			
Fluorescent Lamp:	30W			
Distance between the Panel & Lamp:	≥ 50cm			
Distance between the Panel & Eyes of the Inspector:≥ 30cm				
Finger glove (or finger cover) must be worn by the inspector.				
Inspection table or jig must be anti-electrostatic.				

5.2. Sampling Plan

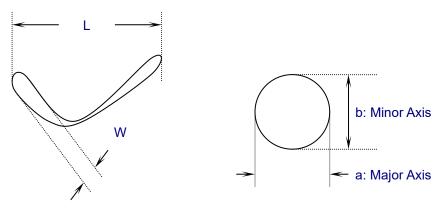
Level II, Normal Inspection, Single Sampling, MIL-STD-105E

5.3. Criteria & Acceptable Quality Level

Partition	AQL	Definition
Major	0.65	Defects in Pattern Check (Display On)
Minor	1.0	Defects in Cosmetic Check (Display Off)

Check Item	Classification	Criteria
Panel General Chipping	Minor	X > 6 mm (Along with Edge) Y > 1 mm (Perpendicular to edge)

5.3.1. Cosmetic Check (Display Off) in Non-Active Area


Panel Crack	Minor	Any crack is not allowable.
Copper Exposed (Even Pin or Film)	Minor	Not Allowable by Naked Eye Inspection
Film or Trace Damage	Minor	
Terminal Lead Prober Mark	Acceptable	
Glue or Contamination on Pin (Couldn't Be Removed by Alcohol)	Minor	
Ink Marking on Back Side of panel (Exclude on Film)	Acceptable	Ignore for Any

Check Item	Classification	Criteria
Any Dirt & Scratch on Polarizer's Protective Film	Acceptable	Ignore for not Affect the Polarizer
Scratches, Fiber, Line-Shape Defect (On Polarizer)	Minor	$W \le 0.1$ Ignore $W > 0.1$ $L \le 2$ $L \le 2$ $n \le 1$ $L > 2$ $n = 0$
Dirt, Black Spot, Foreign Material, (On Polarizer)	Minor	$\Phi \le 0.1$ Ignore $0.1 < \Phi \le 0.25$ $n \le 1$ $0.25 < \Phi$ $n = 0$
Dent, Bubbles, White spot (Any Transparent Spot on Polarizer)	Minor	$\Phi \le 0.5$ \Rightarrow Ignore if no Influence on Display $0.5 < \Phi$ n = 0
Fingerprint, Flow Mark (On Polarizer)	Minor	Not Allowable

It is recommended to execute in clear room environment (class 10k) if actual in necessary.

Note 1: Protective film should not be tear off when cosmetic check.

Note 2: Definition of W & L & Φ (Unit: mm): Φ = (a + b) / 2

Check Item	Classification	Criteria
No Display	Major	
Missing Line	Major	
Pixel Short	Major	
Darker Pixel	Major	
Wrong Display	Major	
Un-uniform	Major	

5.3.3. Pattern Check (Display On) in Active Area

6. Reliability Specification

6.1. Contents of Reliability Tests

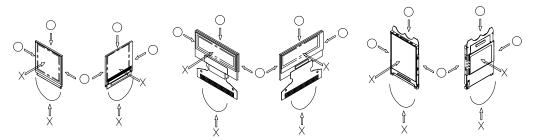
No	Item	Condition	Quantity
1	High Temperature Operating	70℃, 240Hrs	2
2	Low Temperature Operating	-40℃, 240Hrs	2
3	High Humidity	60℃, 90%RH, 120Hrs	2
4	High Temperature Storage	85℃, 240Hrs	2
5	Low Temperature Storage	-40℃, 240Hrs	2
6	Thermal Cycling Test	-40℃, 30min ~ 85℃, 30min, 24 cycles.	2

Note1. The samples used for the above tests do not include polarizer. Note2. No moisture condensation is observed during tests.

6.2. Failure Check Standard

After the completion of the described reliability test, the samples were left at room temperature for 2 hrs prior to conducting the failure test at 23 ± 5 °C; 55 ± 15 % RH.

7. Precautions When Using These OLED Display Modules


7.1. Handling Precautions

- 1) Since the display panel is being made of glass, do not apply mechanical impacts such us dropping from a high position.
- 2) If the display panel is broken by some accident and the internal organic substance leaks out, be careful not to inhale nor lick the organic substance.
- 3) If pressure is applied to the display surface or its neighborhood of the OLED display module, the cell structure may be damaged and be careful not to apply pressure to these sections.
- 4) The polarizer covering the surface of the OLED display module is soft and easily scratched. Please be careful when handling the OLED display module.
- 5) When the surface of the polarizer of the OLED display module has soil, clean the surface. It takes advantage of by using following adhesion tape.
 - * Scotch Mending Tape No. 810 or an equivalent

Never try to breathe upon the soiled surface nor wipe the surface using cloth containing solvent such as ethyl alcohol, since the surface of the polarizer will become cloudy.

Also, pay attention that the following liquid and solvent may spoil the polarizer:

- * Water
- * Ketone
- * Aromatic Solvents
- 6) Hold OLED display module very carefully when placing OLED display module into the system housing. Do not apply excessive stress or pressure to OLED display module. And, do not over bend the film with electrode pattern layouts. These stresses will influence the display performance. Also, secure sufficient rigidity for the outer cases.

- 7) Do not apply stress to the driver IC and the surrounding molded sections.
- 8) Do not disassemble nor modify the OLED display module.
- 9) Do not apply input signals while the logic power is off.
- 10) Pay sufficient attention to the working environments when handing OLED display modules to prevent occurrence of element breakage accidents by static electricity.
 - * Be sure to make human body grounding when handling OLED display modules.
 - * Be sure to ground tools to use or assembly such as soldering irons.
 - * To suppress generation of static electricity, avoid carrying out assembly work under dry environments.
 - * Protective film is being applied to the surface of the display panel of the OLED display module. Be careful since static electricity may be generated when exfoliating the protective film.
- 11) Protection film is being applied to the surface of the display panel and removes the

protection film before assembling it. At this time, if the OLED display module has been stored for a long period of time, residue adhesive material of the protection film may remain on the surface of the display panel after removed of the film. In such case, remove the residue material by the method introduced in the above Section 5).

12) If electric current is applied when the OLED display module is being dewed or when it is placed under high humidity environments, the electrodes may be corroded and be careful to avoid the above.

7.2. Storage Precautions

 When storing OLED display modules, put them in static electricity preventive bags avoiding exposure to direct sun light nor to lights of fluorescent lamps. and, also, avoiding high temperature and high humidity environment or low temperature (less than 0 ° C) environments. (We recommend you to store these modules in the packaged state when they were shipped from Newvision technology Co.,Ltd.)
 At that time, he enreful not to let water drane adhere to the packaged or here parties dowing

At that time, be careful not to let water drops adhere to the packages or bags nor let dewing occur with them.

2) If electric current is applied when water drops are adhering to the surface of the OLED display module, when the OLED display module is being dewed or when it is placed under high humidity environments, the electrodes may be corroded and be careful about the above.

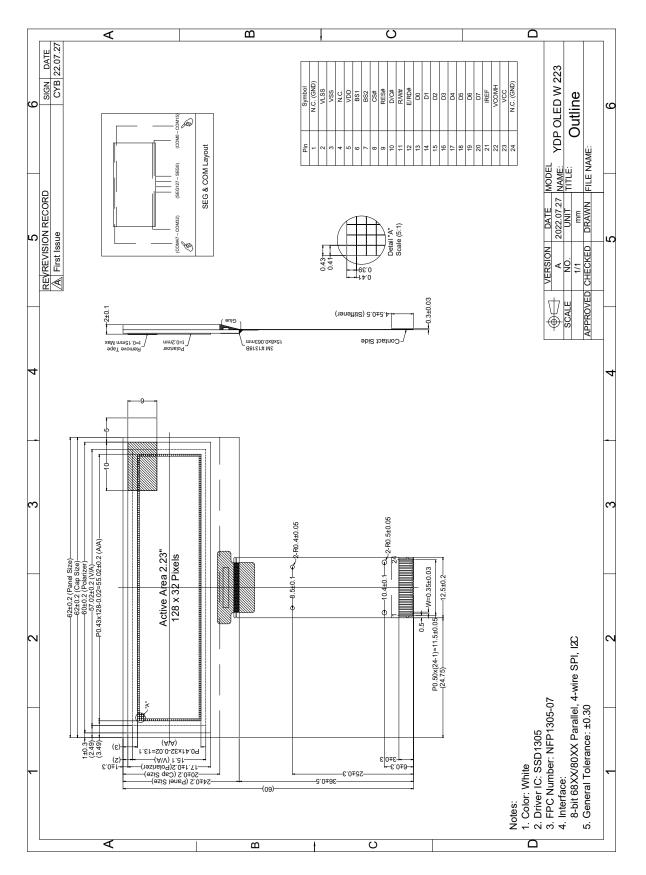
7.3. Designing Precautions

- 1) The absolute maximum ratings are the ratings which cannot be exceeded for OLED display module, and if these values are exceeded, panel damage may be happen.
- 2) To prevent occurrence of malfunctioning by noise, pay attention to satisfy the V_{IL} and V_{IH} specifications and, at the same time, to make the signal line cable as short as possible.
- We recommend you to install excess current preventive unit (fuses, etc.) to the power circuit (V_{DD}). (Recommend value: 0.5A)
- 4) Pay sufficient attention to avoid occurrence of mutual noise interference with the neighboring devices.
- 5) As for EMI, take necessary measures on the equipment side basically.
- 6) When fastening the OLED display module, fasten the external plastic housing section.
- 7) If power supply to the OLED display module is forcibly shut down by such errors as taking out the main battery while the OLED display panel is in operation, we cannot guarantee the quality of this OLED display module.
- The electric potential to be connected to the rear face of the IC chip should be as follows: SSD1316

*Connection (contact) to any other potential than the above may lead to rupture of the IC.

7.4. Precautions when disposing of the OLED display modules

Request the qualified companies to handle industrial wastes when disposing of the OLED display modules. Or, when burning them, be sure to observe the environmental and hygienic laws and regulations.


7.5. Other Precautions

- When an OLED display module is operated for a long of time with fixed pattern may remain as an after image or slight contrast deviation may occur.
 Nonetheless, if the operation is interrupted and left unused for a while, normal state can be restored. Also, there will be no problem in the reliability of the module.
- To protect OLED display modules from performance drops by static electricity rapture, etc., do not touch the following sections whenever possible while handling the OLED display modules.
 - * Pins and electrodes
 - * Pattern layouts such as the FPC
- 3) With this OLED display module, the OLED driver is being exposed. Generally speaking, semiconductor elements change their characteristics when light is radiated according to the principle of the solar battery. Consequently, if this OLED driver is exposed to light, malfunctioning may occur.
 - * Design the product and installation method so that the OLED driver may be shielded from light in actual usage.
 - * Design the product and installation method so that the OLED driver may be shielded from light during the inspection processes.
- 4) Although this OLED display module stores the operation state data by the commands and the indication data, when excessive external noise, etc. enters into the module, the internal status may be changed. It therefore is necessary to take appropriate measures to suppress noise generation or to protect from influences of noise on the system design.
- 5) We recommend you to construct its software to make periodical refreshment of the operation statuses (re-setting of the commands and re-transference of the display data) to cope with catastrophic noise.

7.6. Warranty

The warranty period shall last twelve months from the date of delivery. Buyer shall be completed to assemble all the processes within the effective twelve months. We shall be liable for replacing any products which contain defective material or process which do not conform to the product specification, applicable drawings and specifications during the warranty period. All products must be preserved, handled and appearance to permit efficient handling during warranty period. The warranty coverage would be exclusive while the returned goods are out of the terms above.

8. Outline Drawing

